128 research outputs found

    Concentration of CO<SUB>2</SUB> over melting ice oscillates

    Get PDF
    We report that the concentration of CO2 over melting ice oscillates as long as water and ice coexist. A phenomenological model involving melting of CO2 containing ice leading to its release, readsorption of the vapor on ice, and dissolution in water is proposed. Thermokinetics of these processes lead to nonlinearity of the dynamics. This phenomenon is also observed over impure ice contaminated with salts or in the presence of nitrogen or air. Oscillations have been observed in several other solute or ice-water systems

    A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)

    Get PDF
    One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1)

    An integrated approach to supply chain risk analysis

    Get PDF
    Despite the increasing attention that supply chain risk management is receiving by both researchers and practitioners, companies still lack a risk culture. Moreover, risk management approaches are either too general or require pieces of information not regularly recorded by organisations. This work develops a risk identification and analysis methodology that integrates widely adopted supply chain and risk management tools. In particular, process analysis is performed by means of the standard framework provided by the Supply Chain Operations Reference Model, the risk identification and analysis tasks are accomplished by applying the Risk Breakdown Structure and the Risk Breakdown Matrix, and the effects of risk occurrence on activities are assessed by indicators that are already measured by companies in order to monitor their performances. In such a way, the framework contributes to increase companies' awareness and communication about risk, which are essential components of the management of modern supply chains. A base case has been developed by applying the proposed approach to a hypothetical manufacturing supply chain. An in-depth validation will be carried out to improve the methodology and further demonstrate its benefits and limitations. Future research will extend the framework to include the understanding of the multiple effects of risky events on different processe

    PHAST: A Fast Phage Search Tool

    Get PDF
    PHAge Search Tool (PHAST) is a web server designed to rapidly and accurately identify, annotate and graphically display prophage sequences within bacterial genomes or plasmids. It accepts either raw DNA sequence data or partially annotated GenBank formatted data and rapidly performs a number of database comparisons as well as phage ‘cornerstone’ feature identification steps to locate, annotate and display prophage sequences and prophage features. Relative to other prophage identification tools, PHAST is up to 40 times faster and up to 15% more sensitive. It is also able to process and annotate both raw DNA sequence data and Genbank files, provide richly annotated tables on prophage features and prophage ‘quality’ and distinguish between intact and incomplete prophage. PHAST also generates downloadable, high quality, interactive graphics that display all identified prophage components in both circular and linear genomic views. PHAST is available at (http://phast.wishartlab.com)

    Transfer Functions for Protein Signal Transduction: Application to a Model of Striatal Neural Plasticity

    Get PDF
    We present a novel formulation for biochemical reaction networks in the context of signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of 'source' species, which receive input signals. Signals are transmitted to all other species in the system (the 'target' species) with a specific delay and transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and recalled to build discrete dynamical models. By separating reaction time and concentration we can greatly simplify the model, circumventing typical problems of complex dynamical systems. The transfer function transformation can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant insight, while remaining an executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modules that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. We also found that overall interconnectedness depends on the magnitude of input, with high connectivity at low input and less connectivity at moderate to high input. This general result, which directly follows from the properties of individual transfer functions, contradicts notions of ubiquitous complexity by showing input-dependent signal transmission inactivation.Comment: 13 pages, 5 tables, 15 figure

    Trapping of a polyketide synthase module after C−C bond formation reveals transient acyl carrier domain interactions

    Get PDF
    Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)‐bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter‐domain interactions after C−C bond formation in a chain‐branching module of the rhizoxin PKS. Mechanism‐based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C−C bond formation by cryo‐electron microscopy (cryo‐EM). The possible existence of two ACP binding sites, one of them a potential “parking position” for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C−C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines

    Identification of Prophages in Bacterial Genomes by Dinucleotide Relative Abundance Difference

    Get PDF
    BACKGROUND: Prophages are integrated viral forms in bacterial genomes that have been found to contribute to interstrain genetic variability. Many virulence-associated genes are reported to be prophage encoded. Present computational methods to detect prophages are either by identifying possible essential proteins such as integrases or by an extension of this technique, which involves identifying a region containing proteins similar to those occurring in prophages. These methods suffer due to the problem of low sequence similarity at the protein level, which suggests that a nucleotide based approach could be useful. METHODOLOGY: Earlier dinucleotide relative abundance (DRA) have been used to identify regions, which deviate from the neighborhood areas, in genomes. We have used the difference in the dinucleotide relative abundance (DRAD) between the bacterial and prophage DNA to aid location of DNA stretches that could be of prophage origin in bacterial genomes. Prophage sequences which deviate from bacterial regions in their dinucleotide frequencies are detected by scanning bacterial genome sequences. The method was validated using a subset of genomes with prophage data from literature reports. A web interface for prophage scan based on this method is available at http://bicmku.in:8082/prophagedb/dra.html. Two hundred bacterial genomes which do not have annotated prophages have been scanned for prophage regions using this method. CONCLUSIONS: The relative dinucleotide distribution difference helps detect prophage regions in genome sequences. The usefulness of this method is seen in the identification of 461 highly probable loci pertaining to prophages which have not been annotated so earlier. This work emphasizes the need to extend the efforts to detect and annotate prophage elements in genome sequences

    Identifying Biological Network Structure, Predicting Network Behavior, and Classifying Network State With High Dimensional Model Representation (HDMR)

    Get PDF
    This work presents an adapted Random Sampling - High Dimensional Model Representation (RS-HDMR) algorithm for synergistically addressing three key problems in network biology: (1) identifying the structure of biological networks from multivariate data, (2) predicting network response under previously unsampled conditions, and (3) inferring experimental perturbations based on the observed network state. RS-HDMR is a multivariate regression method that decomposes network interactions into a hierarchy of non-linear component functions. Sensitivity analysis based on these functions provides a clear physical and statistical interpretation of the underlying network structure. The advantages of RS-HDMR include efficient extraction of nonlinear and cooperative network relationships without resorting to discretization, prediction of network behavior without mechanistic modeling, robustness to data noise, and favorable scalability of the sampling requirement with respect to network size. As a proof-of-principle study, RS-HDMR was applied to experimental data measuring the single-cell response of a protein-protein signaling network to various experimental perturbations. A comparison to network structure identified in the literature and through other inference methods, including Bayesian and mutual-information based algorithms, suggests that RS-HDMR can successfully reveal a network structure with a low false positive rate while still capturing non-linear and cooperative interactions. RS-HDMR identified several higher-order network interactions that correspond to known feedback regulations among multiple network species and that were unidentified by other network inference methods. Furthermore, RS-HDMR has a better ability to predict network response under unsampled conditions in this application than the best statistical inference algorithm presented in the recent DREAM3 signaling-prediction competition. RS-HDMR can discern and predict differences in network state that arise from sources ranging from intrinsic cell-cell variability to altered experimental conditions, such as when drug perturbations are introduced. This ability ultimately allows RS-HDMR to accurately classify the experimental conditions of a given sample based on its observed network state

    Daksha: On Alert for High Energy Transients

    Full text link
    We present Daksha, a proposed high energy transients mission for the study of electromagnetic counterparts of gravitational wave sources, and gamma ray bursts. Daksha will comprise of two satellites in low earth equatorial orbits, on opposite sides of earth. Each satellite will carry three types of detectors to cover the entire sky in an energy range from 1 keV to >1 MeV. Any transients detected on-board will be announced publicly within minutes of discovery. All photon data will be downloaded in ground station passes to obtain source positions, spectra, and light curves. In addition, Daksha will address a wide range of science cases including monitoring X-ray pulsars, studies of magnetars, solar flares, searches for fast radio burst counterparts, routine monitoring of bright persistent high energy sources, terrestrial gamma-ray flashes, and probing primordial black hole abundances through lensing. In this paper, we discuss the technical capabilities of Daksha, while the detailed science case is discussed in a separate paper.Comment: 9 pages, 3 figures, 1 table. Additional information about the mission is available at https://www.dakshasat.in
    • 

    corecore